Estimating recurrence times and seismic hazard of large earthquakes on an individual fault

نویسندگان

  • G. Zöller
  • Y. Ben-Zion
  • M. Holschneider
  • S. Hainzl
چکیده

S U M M A R Y We present a strategy for estimating the recurrence times between large earthquakes and associated seismic hazard on a given fault section. The goal of the analysis is to address two fundamental problems. (1) The lack of sufficient direct earthquake data and (2) the existence of ‘subgrid’ processes that can not be accounted for in any model. We deal with the first problem by using long simulations (some 10 000 yr) of a physically motivated ‘coarsegrain’ model that reproduces the main statistical properties of seismicity on individual faults. We address the second problem by adding stochasticity to the macroscopic model parameters. A small number N of observational earthquake times (2 ≤ N ≤ 10) can be used to determine the values of model parameters which are most representative for the fault. As an application of the method, we consider a model set-up that produces the characteristic earthquake distribution, and where the stress drops are associated with some uncertainty. Using several model realizations with different values of stress drops, we generate a set of corresponding synthetic earthquake catalogues. The recurrence time distributions in the simulated catalogues are fitted approximately by a gamma distribution. A superposition of appropriately scaled gamma distributions is then used to construct a distribution of recurrence intervals that incorporates the assumed uncertainty of the stress drops. Combining such synthetic data with observed recurrence times between the observational ∼M6 earthquakes on the Parkfield segment of the San Andreas fault, allows us to constrain the distribution of recurrence intervals and to estimate the average stress drop of the events. Based on this procedure, we calculate for the Parkfield region the expected recurrence time distribution, the hazard function, and the mean waiting time to the next ∼M6 earthquake. Using five observational recurrence times from 1857 to 1966, the recurrence time distribution has a maximum at 22.2 yr and decays rapidly for higher intervals. The probability for the post 1966 large event to occur on or before 2004 September 28 is 94 per cent. The average stress drop of ∼M6 Parkfield earthquakes is in the range τ = (3.04 ± 0.27) MPa.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Seismicity of Batubesi Dam at Sorowako Region Based on Earthquake Data and Microtremor Measurement

Batubesi Dam which is located in Sorowako region in the middle part of Sulawesi island had been designed with seismic coefficient about 0.20g. The region constitutes an active earthquake zone with the recurrence frequency and magnitude of the earthquake are relatively high. The region is located on and active fault zone due to lateral fault movement (strike-slip) of Matano fault, Palukoro fault...

متن کامل

Estimation of Recurrence Interval of Large Earthquakes on the Central Longmen Shan Fault Zone Based on Seismic Moment Accumulation/Release Model

Recurrence interval of large earthquake on an active fault zone is an important parameter in assessing seismic hazard. The 2008 Wenchuan earthquake (Mw 7.9) occurred on the central Longmen Shan fault zone and ruptured the Yingxiu-Beichuan fault (YBF) and the Guanxian-Jiangyou fault (GJF). However, there is a considerable discrepancy among recurrence intervals of large earthquake in preseismic a...

متن کامل

Integration of Geological and Seismological Data for the Analysis of Seismic Hazard: a Case Study of Japan

Seismic hazard analyses are associated with large uncertainties when historical data are insufficient to define secular rates of seismicity. Such uncertainties may be decreased with geological data in areas where seismicity is shallow and produced by Quaternary faulting. To illustrate, we examine intraplate Japan. Large intraplate earthquakes in Japan characteristically produce surface ruptures...

متن کامل

Probabilistic Seismic Hazard Assessment of Tehran Based on Arias Intensity

A probabilistic seismic hazard assessment in terms of Arias intensity is presented for the city of Tehran. Tehran is the capital and the most populated city of Iran. From economical, political and social points of view, Tehran is the most significant city of Iran. Many destructive earthquakes happened in Iran in the last centuries. Historical references indicate that the old city of Rey and the...

متن کامل

Seismic hazard zoning in Urmia urban area.

 Today, the resiliency of the human centers, especially urban centers against the natural hazards such as earthquakes, is one of the main challenges in the targeted management of urban. One of the effective strategies in the control, containment and prevention of risks from earthquakes is zoning of urban areas in terms of vulnerability. In this regard, the purpose of this study was to determine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007